

Einstein Telescope and a future on the Moon

Jan Harms

Gran Sasso Science Institute

Einstein Telescope

Active seismic survey

Site Studies

Geotechnical Geological Hydrological Geophysical

Example result from an active seismic survey

Vp (m/s)

Lowering of borehole seismometer

ETpathfinder

New facility in Maastricht to learn operating a laser interferometer at cold temperatures.

S

G

S

Einstein Telescope as Xylophone

Each vertex is the center of a pair of interferometers, i.e., 6 interferometers in total.

Main ET Design Parameters

D		
Parameter	ET-HF	ET-LF
Arm length	10 km	10 km
Input power (after IMC)	500 W	3 W
Arm power	3 MW	18 kW
Temperature	290 K	10-20 K
Mirror material	fused silica	silicon
Mirror diameter / thickness	62 cm / 30 cm	45 cm/ 57 cm
Mirror masses	200 kg	211 kg
Laser wavelength	1064 nm	1550 nm
SR-phase (rad)	tuned (0.0)	detuned (0.6)
SR transmittance	10 %	20 %
Quantum noise suppression	freq. dep. squeez.	freq. dep. squeez.
Filter cavities	$1 \times 300 \mathrm{m}$	2×1.0 km
Squeezing level	10 dB (effective)	10 dB (effective)
Beam shape	TEM_{00}	TEM_{00}
Beam radius	12.0 cm	9 cm
Scatter loss per surface	37 ppm	37 ppm
Seismic isolation	SA, 8 m tall	mod SA, 17 m tall
Seismic (for $f > 1$ Hz)	$5 \cdot 10^{-10} \mathrm{m}/f^2$	$5 \cdot 10^{-10} \mathrm{m}/f^2$
Gravity gradient subtraction	none	factor of a few

Geometry of an ET Vertex

Underground Infrastructure Noise

Ventilation

Sanford Underground Research Facility

Newtonian Noise

Underground construction greatly reduces, but does not completely remove, Newtonian noise.

Newtonian noise must be subtracted using data from sensor networks. Most complicated subsystem of Einstein Telescope.

Finite-element simulations

Sensitivity Goals of the Next-Generation Facilities

S

G

S

Binary BH Detection Horizon

z=100

Current infrastructure (Virgo, LIGO, KAGRA)

Next-generation infrastructure (Einstein Telescope, Cosmic Explorer)

Logarithmic distance scale, Pablo Carlos Budassi

z=2

Sheer Numbers

01: 12.9.2015 - 19.1.2016

02: 30.11.2016 - 25.8.2017

O3a: 1.4.2019 – 30.9.2019 O3b: 1.11.2019 –26.3.2020

ET is expected see about 10⁵ BNS and 10⁵ BBH per year

Science Of Neutron Stars

S

G

S

Radioactively powered transients

Black-hole populations

Observing of order 10⁵ BBH mergers, population models can be analyzed precisely as a function of redshift.

Existence of a primordial BH population is speculative. A challenge will be to tell Pop III from primordial BBHs.

De Luca et al, 2020

Individual BBH Signals: New Physics

Black holes: the ultimate engine of discovery [cit Cardoso, 2020]

Probing the structure of BH spacetime

Infer mass-radius relation

Exotic compact objects:

BH superradiance

Quantum gravity: area discretization

Agullo et al, 2021

07/29/2022

15

S

G

S

Quadrupolar vibration induced by a GW (here showing spheroidal mode)

Past Planetary GW Detectors

Data from N.32°W. Benioff strain seismograph at Isabella, CA February 11, 1961 NATURE No. 4763

ROBERT L. FORWARD* DAVID ZIPOY J. WEBER Department of Physics, University of Maryland. College Park, Maryland. STEWART SMITH HUGO BENIOFF LETTERS TO THE EDITORS Seismological Laboratory. California Institute of Technology, Pasadena, California. $\overline{\epsilon(t)^2} \approx \frac{4c^4Q}{\pi^2\omega^3} R^2_{iojo}(\omega) = \frac{60GQ}{c^3\omega} t_{or}(\omega)$

GEOPHYSICS

Upper Limit for Interstellar Millicycle Gravitational Radiation

Upper limits on Riemann-tensor power spectrum

In equation (2), $R^{2}_{iojo}(\omega)$ is the power spectrum of

the Riemann tensor, G is the constant of gravitation

Table 1							
Funda- mental mode	Period (min.)	Q (est.)	Strain ² (av.)	$\begin{bmatrix} R^{2}_{iojo}(\omega) \\ 1 \\ cm.^{4} \text{ (rad./sec.)} \end{bmatrix} \begin{bmatrix} R^{2}_{iojo}(\omega) \\ 0 \end{bmatrix}$	$\frac{t^{or}(\omega)}{\text{watts}}$ -cm. ² (rad./sec.)]		
S2 S6 S8 S10 S14 S20 S20 S20 S20 S20 S20	$54.0 \\ 25.8 \\ 16.0 \\ 11.81 \\ 9.66 \\ 7.47 \\ 5.78 \\ 4.37 \\ 3.66$	400 350 300 250 210 180 160 120 100	80×10^{-25} 20 8 4 2.5 1.2 1 0.6 0.6	$< 0.5 \times 10^{-75}$ 3 Multiply w 5 8.10^{49} (1n 10 to get GW 20 30 PSD 60	< 20 20 ith 10 nHz/f) ⁴ 10 10 ' strain 10 10 10		

NASA, Apollo 17 (1972)

The Lunar Surface Gravimeter would have set the most stringent limits on the energy of a GW background at that time, but it had greatly reduced sensitivity due to a design flaw.

It was then determined that an error in arithmetic made by La Coste and Romberg, and known to the firm's highest officials, had not been corrected by La Coste and Romberg. This led to an instrument which had excellent performance in earth g and was just barely outside of the tolerances for variations of lunar site g. This error resulted in the

Lunar GW Detector Concepts

-20

50

-40

0

T[K] at surface

100

20

150

40

200

- Extremely weak seismic background
- Use coherent noise cancellation to further reduce seismic background noise in data

S

G

The Einstein Telescope; J Harms

Multiband GW Observations

LGWA Science

